
Bacteriocin detection with distributed biological sequence

representation

Md Nafiz Hamid and Iddo Friedberg

Department of Veterinary Microbiology and Preventive Medicine

Iowa State University Ames, IA, USA

{nafizh, idoerg}@iastate.edu

ABSTRACT

Antibiotic resistance is a major public health crisis, and finding new sources of antimicrobial drugs is crucial
to solving this crisis. Bacteriocins, antimicrobial peptide products, have a narrow killing spectrum which
leads to reduced pressure on selection for resistance. We propose a method that uses support vector machines
to predict novel bacteriocins from primary protein sequences. To that end we use the word2vec method,
widely used in natural language processing, to represent amino acid sequences. We use the Uniprot TrEMBL
database taking advantage of this huge unlabeled data. Our method predicts multiple putative bacteriocins
in Lactobacillus. This method will also help in detecting putative bacteriocins from rapidly generating newly
sequenced bacterial data.

1. INTRODUCTION

The discovery and application of antibiotics rank among the greatest achievements of modern medicine.
Antibiotics have eradicated many infectious diseases and enabled many medical procedures that would have
otherwise been fatal, including modern surgery, organ transplants, and immunosupressive treatment such as
radiation and chemotherapy. However, due to the massive use of antibiotics in healthcare and agriculture,
antibiotic resistant bacteria have been emerging in unprecedented scales. Each year, 23,000 people in the US
alone die from infections caused by antibiotic resistant bacteria.1 One strategy to combat antibiotic resistance
is to search for other antimicrobial drugs that are not classic antibiotics, and which may not be as prone to
resistance.

A promising class of compounds are the peptide-based bacteriocins, which are synthesized by many bac-
teria as antimicrobials. With the increased sequencing of genomes and metagenomes, we are presented with
a wealth of data that also include genes encoding bacteriocins. Bacteriocins can also have a narrow killing
spectrum leading to a hypothesis that they can be applied as ‘designer drugs’.2 Because of this selectivity in
virulence, antiobiotics synthesized from bacteriocins will lead to a slow proliferation of resistance increasing
the shelf life of new drugs.

Several computational tools and databases have been developed to aid in the discovery and identification
of bacteriocins. BAGEL3 is a database and a homology-based mining tool that includes a large number of
annotated bacteriocin sequences. BACTIBASE4 is a similar tool, which also contains predicted sequences.
AntiSMASH5 is a platform for genome mining for secondary metabolite producers, which also includes bacte-
riocin discovery. Recently, we introduced BOA,6 a standalone genome-mining software that identifies possible
bacteriocins by searching for homologs of context genes : genes that are associated with the transport, im-
munity, regulation, and post-translational modification of bacteriocins. However, due to their unorthodox
structure, bacteriocins are hard to find using standard bioinformatics methods.

Here we present a novel method to identify bacteriocins from protein sequence alone. The main challenge
in detecting bacteriocins is having a small number of positive examples of known bacteriocin sequences.
Therefore, the requirement for a representation of the sequences that captures its unique intricacies is more
so crucial. Towards that end, we represent protein sequences using word2vec.7 After an initial unsupervised
learning step, we use a supervised learning algorithm to detect novel putative bacteriocins.



2. METHODS

Word2vec is a technique used in natural language processing that uses a large corpus of text as its input and
provides a vector representation for the words as output. The goal is to give words that appear in similar
contexts similar representations. This type of representation usually leads towards better results in various
types of subsequent classification problems. The training can be done in two ways: the continuous bag of
words(CboW) model, or the skip-gram model.

(a) Generating training instances from an amino acid
sequence

(b) Neural network architecture for a single training
instance

Figure 1: Representation learning for 3-grams with skip-gram training. (a) Training: a protein sequence (top left),
is broken into 3-grams with each 3-gram associated with the previous and following two 3-grams. (b) the neural
network architecture for MKL as input, and IGP as output.

We used bacterial sequences from the Uniprot TrEMBL database8 as our unsupervised training corpus
and the skip-gram model as the training method to get a representation for each 3-gram. The skip-gram
model is a neural network where the inputs and outputs of the network are one hot vectors with our training
instance input word and output word. The size of the one hot vector is the size of our whole vocabulary
which is all the 3-grams. We generated the training instances with a context window of size 3, where we took
a word as input and used all of its surrounding words within the context window as outputs. The process is
explained in Figure 1 for a corpus with a single amino acid sequence. Unsupervised training, generated a 100
dimensional vector for each of the 3-grams. We represented each sequence as the summation of vectors of all
overlapping 3-grams which was shown to be effective for protein sequecne representation by Asgari et al .9

(a) with primary negative dataset (b) with second negative dataset (c) with third negative dataset
Figure 2: t-sne visualization of word vector representations for positive and negative bacteriocin amino acid sequences

We used 346 sequences from the BAGEL database as our positive bacteriocin training samples. For
the negative training set, we used the Uniprot Swissprot database which is manually reviewed and more
reliable. We took all the bacterial amino acid sequences from this database and used CD-HIT with a 50%
identity threshold to reduce redundancies. Then, for the primary negative training set, we took 346 sequences



Table 1: Comparison between word2vec and k-mer representation. Bold numbers are the best results between these
two representations. Blue color areas represent the best classification method for both types of representation

word2vec k-mer
Methods Mean Precision Mean Recall Mean F1 Mean precision Mean Recall Mean F1

SVM 0.844 0.843 0.842 0.867 0.796 0.827
Logistic Regression 0.845 0.831 0.837 0.864 0.831 0.842

Decision Tree 0.759 0.759 0.757 0.767 0.759 0.761

Random Forest 0.811 0.820 0.813 0.834 0.803 0.817

Table 2: SVM with word2vec representation on three different negative set
Mean Precision Mean Recall Mean F1

primary negative dataset 0.844 0.843 0.842
second negative dataset 0.916 0.892 0.902
third negative dataset 0.955 0.927 0.940

that had the keywords ‘not anti-microbial’, ‘not antibiotic’, ‘not in plasmid’, and that had the same length
distribution as our positive bacteriocin sequences. For consistency, we also created two additional negative
datasets following the same steps as above, but with different sequences and no overlap between the three sets.
Figure 2 shows the t-sne visualizations of all the datasets where each point is a sequence that was represented
by a 100 dimensional vector. We then applied several supervised classification methods to classify positive
and negative bacteriocin sequences.

To search for genomic regions with better chances of containing novel bacteriocins, we took advantage
of the biological knowledge of context genes which assist in the transport, modification, and regulation of
bacteriocins. Usually, many bacteriocins have some or all of four types of context genes in proximity. Having
an experimentally verified set of 54 context genes, we collected the annotation keywords for these 54 context
genes from the Refseq database, and BLASTed the BAGEL bacteriocins against the non-redundant protein
database. We removed the top hits from the result which are essentially the bacteriocins themselves. We then
took all the genes with similar keywords from our experimentally verified context gene set surrounding these
bacteriocins within 25kb. After doing CD-HIT to get rid of redundancy, we had 1240 new putative context
genes.

Figure 3: Bacteriocins with context genes

We BLASTed all 1294 putative con-
text genes against the whole bacteria refseq
database and we collected hits with an e-value
≤ 10−6. We then identified 50kb regions of con-
tiguous hits. Figure 4 provides a graphical view
of our approach. We applied our trained ma-
chine learning model on these 50kb regions to
predict putative bacteriocins.

3. RESULTS

We performed a 10-fold nested cross-validation
on the set of positive bacteriocins and the primary negative bacteriocins. Table 1 compares the word2vec
approach and a k-mer based representation with various classification algorithms. For the k-mer based
approach we created an 8000 size vector for each sequence where the indices had counts for each occurrence of
a 3-gram in that sequence. As this is hugely sparse, we used truncated Singular Value Decomposition(SVD)
to reduce the dimension to 100, then we applied the classification algorithms.

Figure 4: Potential areas for putative bacte-
riocins

Table 1 shows that a support vector machine (SVM) gives
us the best F1 score for word2vec while for k-mer it is the lo-
gistic regression. While the k-mer based approach had a better
precision overall, word2vec approach provides a greater balance
between precision and recall. Specially, for our purpose, which
is to retrieve as many bacteriocins as we can, having a good



recall is essential. Consequently, we used our trained SVM to find new bacteriocins in the Refseq10 database
where the sequences are represented with our word2vec model.

Table 2 shows the performance of SVM with word2vec representation for different negative bacteriocin
datasets. The performance gain is quite huge which is somewhat anticipated as the second and third negative
set has slightly different length distributions for the negative set than the positive bacteriocin set due to
lack of sequences of certain lengths. The t-sne representations with these two sets also show a more clear
separation between the positive points and the negative points.

We applied our trained SVM model on the identified 50kb regions to predict putative bacteriocins. The
model predicted a total of 1186 putative bacteriocins in Lactobacillus with varying degrees of probability.
We predicted 11 putative bacteriocins with a probability of 0.95 or more. While work on experimentally
verifying them is ongoing, we also computationally analyzed their potential of being bacteriocins. Previously,
we mentioned that many bacteriocins have some or all of four types of neighboring context genes. Therefore,
we looked for these context genes in the vicinity of our predicted bacteriocins.

Figure 5: Context genes found surrounding the predicted bacteriocins
wihin +/- 25kb range

Figure 5 shows three examples of con-
text genes found in genomic stretches next
to bacteriocin genes. Our predicted bac-
teriocin in Lactobacillus acidophilus La-14

has regulator and transporter genes in its
vicinity. The predicted bacteriocin in Lac-

tobacillus acidophilus 30SC also has reg-
ulator and transporter genes surrounding
it. Similarly, the predicted bacteriocin in
Lactobacillus acidophilus NCFM has reg-
ulator, transporter, and immunity genes
in its vicinity. Class I bacteriocins are
heavily post-translationally modified with
the help of modifier genes while class II
bacteriocins remain unmodified. Our pre-
dictions seem to indicate that they are of
class II.

4. DISCUSSION

We developed a machine learning ap-
proach for predicting bacteriocins from
protein sequence that takes advantage of the large volume of unlabeled data. Our application of word2vec
provides us with a representation of amino acid sequences that helps us use the modest size of our positive
training set. The 3-gram representation we generated can be used in other machine learning tasks across
computational microbiology without requiring any more expensive training. For example, these represen-
tations can work as a pre-trained layer in a different deep learning task. We hypothesize that changing
hyperparameters for our skip-gram training to do more extensive training might improve the results which
will improve upon the best case of a k-mer based approach. For example, in our training, we used a context
window of 3 and a vector size of 100. Increasing the context window size might enable the neural network
to incorporate more information into the dense vector though it requires more training time. Our machine
learning approach does not need hand-engineered features. Using machine learning also provides us with
an associated confidence score, which is useful for experimentalists who wish to apply this method towards
genome mining of bacteriocins.
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